Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELoo, KEELoo logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC[superscript 16] logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PicKit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VanSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-0206-0
EU Declaration of Conformity

This declaration of conformity is issued by the manufacturer. The development/evaluation tool is designed to be used for research and development in a laboratory environment. This development/evaluation tool is not a Finished Appliance, nor is it intended for incorporation into Finished Appliances that are made commercially available as single functional units to end users under EU EMC Directive 2004/108/EC and as supported by the European Commission’s Guide for the EMC Directive 2004/108/EC (8th February 2010).

This development/evaluation tool complies with EU RoHS2 Directive 2011/65/EU.

For information regarding the exclusive, limited warranties applicable to Microchip products, please see Microchip’s standard terms and conditions of sale, which are printed on our sales documentation and available at www.microchip.com.

Signed for and on behalf of Microchip Technology Inc. at Chandler, Arizona, USA

Derek Carlson
VP Development Tools

16-July-2013
Date
Table of Contents

Preface ... 7
Introduction .. 7
Document Layout .. 7
Conventions Used in this Guide ... 8
Warranty Registration ... 9
Recommended Reading .. 9
The Microchip Website .. 10
Development Systems Customer Change Notification Service 10
Customer Support ... 11
Revision History .. 11

Chapter 1. Overview

1.1 Introduction .. 13
1.2 Hillstar Concept and Deliverables .. 13
1.3 Hillstar Development Kit Package Content .. 14
1.4 Hillstar Development Kit Reference Electrodes ... 15
1.5 MGC3130 Software Package – Aurea GUI and GestIC Library 17
1.6 MGC3130 Software Development Kit (SDK) .. 17

Chapter 2. Getting Started

2.1 Prerequisites ... 19
2.2 Step 1: Build-up Development Kit .. 19
2.3 Step 2: Connecting Hillstar Development Kit with Your PC 20
2.4 Step 3: Install Windows CDC Driver .. 20
2.5 Step 4: Start Aurea ... 20

Chapter 3. Hillstar Boards – Hardware Description

3.1 Overview ... 23
3.1.1 I²C to USB Bridge .. 23
3.1.2 MGC3130 Unit ... 23
3.1.3 95x60 mm Reference Electrode PCB .. 24
3.2 MGC3130 Unit ... 24
3.3 Hillstar 95x60 mm Reference Electrode ... 25
3.4 I²C to USB Bridge .. 27

Chapter 4. Design In: Hillstar In Target Application

4.1 Introduction .. 31
4.2 Integration Examples ... 31

Chapter 5. Troubleshooting
Appendix A. Schematics
 A.1 Introduction ... 37
 A.2 Bill of Materials ... 37
 A.3 Board – Schematics and Layout 39

Appendix B. Sensitivity Profile and Capacitances
 B.1 Introduction ... 43
 B.2 Sensitivity Profiles .. 43
 B.3 Electrode Capacities ... 44

Appendix C. Parameterization Support
 C.1 How to Build a Hand Brick .. 45
 C.2 Usage of the Hand Brick as Artificial Hand 47

Appendix D. Driver Installation Manual
 D.1 Open Device Manager .. 49
 D.2 Select Device ... 49
 D.3 Locate Driver ... 50
 D.4 Verify Communication .. 50

Appendix E. Glossary

Worldwide Sales and Service ... 53
INTRODUCTION

This chapter contains general information that will be useful to know before using the MGC3130 Hillstar Development Kit. Items discussed in this chapter include:

• Document Layout
• Conventions Used in this Guide
• Warranty Registration
• Recommended Reading
• The Microchip website
• Development Systems Customer Change Notification Service
• Customer Support
• Revision History

DOCUMENT LAYOUT

This document describes the installation and use of the MGC3130 Hillstar Development Kit. The document is organized as follows:

• Chapter 1. “Overview”
• Chapter 2. “Getting Started”
• Chapter 3. “Hillstar Boards – Hardware Description”
• Chapter 4. “Design In: Hillstar In Target Application”
• Chapter 5. “Troubleshooting”
• Appendix A. “Schematics”
• Appendix B. “Sensitivity Profile and Capacitances”
• Appendix C. “Parameterization Support”
• Appendix D. “Driver Installation Manual”
• Appendix E. “Glossary”

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our website (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is “DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB® IDE online help. Select the Help menu, and then Topics to open a list of available online help files.
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

<table>
<thead>
<tr>
<th>DOCUMENTATION CONVENTIONS</th>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial font:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italic characters</td>
<td>Referenced books</td>
<td>MPLAB® IDE User’s Guide</td>
<td>...is the only compiler...</td>
</tr>
<tr>
<td></td>
<td>Emphasized text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial caps</td>
<td>A window</td>
<td>the Output window</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A dialog</td>
<td>the Settings dialog</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A menu selection</td>
<td>select Enable Programmer</td>
<td></td>
</tr>
<tr>
<td>Quotes</td>
<td>A field name in a window or dialog</td>
<td>“Save project before build”</td>
<td></td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
<td>A menu path</td>
<td>File>Save</td>
<td></td>
</tr>
<tr>
<td>Bold characters</td>
<td>A dialog button</td>
<td>Click OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A tab</td>
<td>Click the Power tab</td>
<td></td>
</tr>
<tr>
<td>N’Rnnnn</td>
<td>A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.</td>
<td>4'b0010, 2'hF1</td>
<td></td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
<td>A key on the keyboard</td>
<td>Press <Enter>, <F1></td>
<td></td>
</tr>
<tr>
<td>Courier New font:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Courier New</td>
<td>Sample source code</td>
<td>#define START</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filenames</td>
<td>autoexec.bat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>File paths</td>
<td>c:\mcc18\h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keywords</td>
<td>_asm, _endasm, static</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Command-line options</td>
<td>-Op+, -Op-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit values</td>
<td>0, 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constants</td>
<td>0xFF, ‘A’</td>
<td></td>
</tr>
<tr>
<td>Italic Courier New</td>
<td>A variable argument</td>
<td>file.o, where file can be any valid filename</td>
<td></td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Optional arguments</td>
<td>mcc18 [options] file [options]</td>
<td></td>
</tr>
<tr>
<td>Curly brackets and pipe character: {</td>
<td>Choice of mutually exclusive arguments; an OR selection</td>
<td>errorlevel {0</td>
<td>1}</td>
</tr>
<tr>
<td>Ellipses...</td>
<td>Replaces repeated text</td>
<td>var_name [, var_name...]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Represents code supplied by user</td>
<td>void main (void) { ... }</td>
<td></td>
</tr>
</tbody>
</table>
WARRANTY REGISTRATION

Please complete the enclosed Warranty Registration Card and mail it promptly. Sending in the Warranty Registration Card entitles users to receive new product updates. Interim software releases are available at the Microchip website.

RECOMMENDED READING

This user’s guide describes how to use the MGC3130 Hillstar Development Kit. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources.

This document describes the MGC3130 system characteristic parameters and the design process. It enables the user to generate a good electrode design and to parameterize the full GestiC system.

MGC3030/MGC3130 GestiC® Library Interface Description (DS40001718)
This document is the interface description of the MGC3130's GestiC Library. It outlines the function of the Library’s message interface, and contains the complete message reference to control and operate the MGC3130 system.

MGC3030/MGC3130 3D Gesture Controller Data Sheet (DS40001667)
Consult this document for information regarding the MGC3130 3D Tracking and Gesture Controller.

Aurea Graphical User Interface User’s Guides (DS40001681)
This document describes how to use the MGC3130 Aurea Graphical User Interface.
THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

• **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
• **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
• **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives™

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

The Development Systems product group categories are:

• **Compilers** – The latest information on Microchip C compilers, assemblers, linkers and other language tools. These include all MPLAB® C compilers; all MPLAB assemblers (including MPASM™ assembler); all MPLAB linkers (including MPLINK™ object linker); and all MPLAB librarians (including MPLIB™ object librarian).
• **Emulators** – The latest information on Microchip in-circuit emulators. This includes the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators.
• **In-Circuit Debuggers** – The latest information on the Microchip in-circuit debuggers. This includes MPLAB ICD 3 in-circuit debuggers and PICkit™ 3 debug express.
• **MPLAB® IDE** – The latest information on Microchip MPLAB IDE, the Windows® Integrated Development Environment for development systems tools. This list is focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and MPLAB SIM simulator, as well as general editing and debugging features.
• **Programmers** – The latest information on Microchip programmers. These include production programmers such as MPLAB REAL ICE in-circuit emulator, MPLAB ICD 3 in-circuit debugger and MPLAB PM3 device programmers. Also included are nonproduction development programmers such as PICSTART® Plus and PICkit 2 and 3.
CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at:
http://www.microchip.com/support.

REVISION HISTORY

Revision A (October, 2013)
This is the initial release of the document.

Revision B (January, 2016)
Updated Recommended Reading section; Updated Figures 2-1, 3-2, 3-6, A-2, A-3 and A-4.
Chapter 1. Overview

1.1 INTRODUCTION

The MGC3130 is a 3G gesture controller based on Microchip’s GestIC® technology. It is developed as a mixed-signal controller. The MGC3130 has one transmit and five very sensitive receive channels that are capable to detect changes of a transmitted electrical field (E-field) corresponding to capacitive changes in the femtofarad (1 fF = 10^-15F) range.

In order to transmit and receive an electrical field, electrodes have to be connected to the transmitting and receiving channels of the MGC3130 controller. The spatial arrangement of the electrodes allows the chip to determine the center of gravity of the electric field distortion, and thus position tracking and gesture recognition of a user’s hand in the detection space.

1.2 HILLSTAR CONCEPT AND DELIVERABLES

The Hillstar Development Kit is designed to support an easy integration of Microchip’s MGC3130 3D Gesture and Tracking Controller into customer’s applications. It provides MGC3130 system setup, related hardware and software references.

With the MGC3130 Software Package, including Aurea Graphical User Interface and GestIC Library, the MGC3130 Software Development Kit (SDK) and PIC18 Host Reference code, design-in is easy in five steps:

1. Feature Definition
2. Electrode Design
3. MGC3130 Parameterization
4. Host Application Programming
5. Verification

Hillstar hardware builds a complete MGC3130 reference system consisting of three individual PCBs:

- MGC3130 Unit
- I²C to USB Bridge
- Reference Electrode with a 95x60 mm sensitive area

It can be plugged to a PC via USB cable and used for evaluation of MGC3130 chip and GestIC technology. During the customer’s design-in process the individual boards can be combined according to the customers need.

Three examples are given below:

- Combine MGC3130 Unit and I²C to USB Bridge to evaluate customized electrodes
- Use I²C to USB Bridge to parameterize and debug the MGC3130 application circuitry in the customer’s design
- Combine MGC3130 Unit and Electrodes to develop gesture-driven applications for PC-based or embedded software environments
The Hillstar Development Kit provides an artificial test hand, further called hand brick, helping to stimulate the human hand operating the GestIC application. The hand brick has to be used during the design-in process to parametrize and evaluate customer’s applications. The hand brick’s surface is conductive and connected to GND via cable in order to reproduce the grounding conditions of the human body.

1.3 HILLSTAR DEVELOPMENT KIT PACKAGE CONTENT

The Hillstar Development Kit package content is listed below:
- MGC3130 Module
- I2C to USB Bridge Module
- 4-layer reference electrode (95x60 mm sensitive area)
- ‘Hand brick’ set (self-assembly, four foam blocks, one copper foil)
- USB Cable for PC connection

The ‘hand brick’ set is used during the design-in process for sensor calibration and performance evaluation purposes. For usage and assembly information, refer to Appendix C. “Parameterization Support”.
1.4 HILLSTAR DEVELOPMENT KIT REFERENCE ELECTRODES

The Hillstar Development Kit includes a collection of layout references (Gerber files) for electrode designs and ready-to-use sensor modules with MGC3130 backside assembly.

The following electrode designs are included:

- 140x90 mm sensitive area – outline 168 x 119 mm
- 95x60 mm sensitive area – outline of 120 x 85 mm
- 80x80 mm sensitive area – outline 104 x 104 mm
- 100x50 mm sensitive area – outline 128 x 72 mm
- 50x30 mm sensitive area – outline 63 x 47 mm
- 30x30 mm sensitive area – outline 49 x 49 mm

Sensor Modules

- 95x60 mm sensitive area – outline of 120 x 85 mm
- 30x30 mm sensitive area – outline 49 x 52 mm

FIGURE 1-2: HILLSTAR DEVELOPMENT KIT REFERENCE ELECTRODES
Dimensions of the designs are given in Table 1-1 and Figure 1-3 below.

TABLE 1-1: ELECTRODE DIMENSIONS

<table>
<thead>
<tr>
<th>Sensitive Area</th>
<th>140x90 mm</th>
<th>95x60 mm(^{(1)})</th>
<th>80x80 mm</th>
<th>100x50 mm</th>
<th>50x30 mm</th>
<th>30x30 mm(^{(2)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Layer</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>approx. 3:2</td>
<td>approx. 3:2</td>
<td>1:1</td>
<td>approx. 2:1</td>
<td>5:3</td>
<td>1:1</td>
</tr>
<tr>
<td>A</td>
<td>168 mm</td>
<td>120 mm</td>
<td>104 mm</td>
<td>128 mm</td>
<td>63 mm</td>
<td>49 mm</td>
</tr>
<tr>
<td>B</td>
<td>119 mm</td>
<td>85 mm</td>
<td>104 mm</td>
<td>72 mm</td>
<td>47 mm</td>
<td>49 mm</td>
</tr>
<tr>
<td>C</td>
<td>138 mm</td>
<td>95.7 mm</td>
<td>79.8 mm</td>
<td>103.6 mm</td>
<td>50 mm</td>
<td>31.8 mm</td>
</tr>
<tr>
<td>D</td>
<td>88.7 mm</td>
<td>60.5 mm</td>
<td>79.8 mm</td>
<td>46.8 mm</td>
<td>30 mm</td>
<td>27.3 mm</td>
</tr>
<tr>
<td>E</td>
<td>131.7 mm</td>
<td>91.7 mm</td>
<td>75.8 mm</td>
<td>99.6 mm</td>
<td>46 mm</td>
<td>27.3 mm</td>
</tr>
<tr>
<td>F</td>
<td>5 mm</td>
<td>5 mm</td>
<td>5 mm</td>
<td>5 mm</td>
<td>2.5 mm</td>
<td>3.5 mm</td>
</tr>
<tr>
<td>G</td>
<td>128 mm</td>
<td>85.7 mm</td>
<td>69.8 mm</td>
<td>93.6 mm</td>
<td>44 mm</td>
<td>25.8 mm</td>
</tr>
<tr>
<td>H</td>
<td>78.7 mm</td>
<td>50, 5 mm</td>
<td>69, 8 mm</td>
<td>36, 8 mm</td>
<td>24 mm</td>
<td>25.8 mm</td>
</tr>
<tr>
<td>Center Electrode cross-hatching</td>
<td>3%</td>
<td>3%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Tx Electrode cross-hatching -under center electrode</td>
<td>50 %</td>
<td>50%</td>
<td>50%</td>
<td>50 %</td>
<td>50 %</td>
<td>50 %</td>
</tr>
<tr>
<td>-outside center electrode</td>
<td>20 %</td>
<td>20%</td>
<td>20%</td>
<td>20 %</td>
<td>20 %</td>
<td>20 %</td>
</tr>
</tbody>
</table>

Note 1: These dimensions are also valid for 95x60 mm sensor module.

Note 2: These dimensions are also valid for 30x30 mm sensor module except the B dimension which is equal to 52 and Tx electrode which is solid instead of cross-hatched.
The Gerber data of all electrode reference designs are included in the MGC3130 Hillstar Hardware Reference package and can be downloaded from Microchip's website www.microchip.com/GestICGettingStarted.

1.5 MGC3130 SOFTWARE PACKAGE – AUREA GUI AND GestIC LIBRARY

The MGC3130 Software Package contains all relevant system software and documentation. Hillstar Development Kit is supported by MGC3130 Software Package 0.4 and following versions.

The package contains:
- Aurea PC software
- GestIC Library binary file
- GestIC Parameterization files
- Windows CDC driver
- Documentation

The latest MGC3130 software package can be downloaded from Microchip's website www.microchip.com/GestICGettingStarted.

1.6 MGC3130 SOFTWARE DEVELOPMENT KIT (SDK)

The MGC3130 Software Development Kit (SDK) supports the integration of MGC3130 into a software environment. Thus, it includes a C reference code for GestIC API, a precompiled library for Windows operating systems and a demo application using the GestIC API interface.

Hillstar Development Kit is supported by MGC3130 SDK 0.4 and the following versions.

The latest SDK can be downloaded from Microchip’s website www.microchip.com/GestICGettingStarted.
Chapter 2. Getting Started

Hillstar Development Kit can be used as a stand-alone GestIC system and evaluated in conjunction with the Aurea PC software. This section describes how to get started.

2.1 PREREQUISITES

The following prerequisites have to be fulfilled:

- PC with Windows 7 or Windows 8 operating system and USB port and minimum screen resolution of 1024x768
- Hillstar Development Kit (MGC3130 Unit, I²C to USB Bridge, 95x60 mm frame electrode)
- MGC3130 Software Package 0.4 and following versions

The MGC3130 Software Package is available as a .zip file. Unzip the file, run setup.exe and install the package to your PC. The folder structure is as shown in Figure 2-1.

![FIGURE 2-1: FOLDER STRUCTURE]

- 01_Documentation
- 02_GUI
- 03_GestIC Library
- 04_Driver

2.2 STEP 1: BUILD-UP DEVELOPMENT KIT

Connect Electrodes, MGC3130 Unit and I²C to USB Bridge as shown in Figure 2-2.

Note: Make sure the MGC3130 Unit and the I²C USB Bridge are already connected before plugging in the USB connection.
2.3 **STEP 2: CONNECTING HILLSTAR DEVELOPMENT KIT WITH YOUR PC**

Use the supplied USB cable to connect the Hillstar Development Kit to your PC. The Power LEDs on both, 1C to USB Bridge and MGC3130 Unit will illuminate. Furthermore, LED 1 on the 1C to USB Bridge will flash very fast (\textasciitilde 10 Hz). In case LED 1 is flashing slow (\textasciitilde 1 Hz), the Windows CDC driver is already installed on your PC. Please skip the next step and go to Section 2.5 “Step 4: Start Aurea”.

2.4 **STEP 3: INSTALL WINDOWS CDC DRIVER**

The Windows CDC driver can be found in the MGC3130 Software Package in folder \texttt{04_Driver}.

When the Hillstar Development Kit is connected to your PC for the first time, Windows requests the appropriate device driver and guides you through the installation process. Alternatively, you can install the driver manually, (e.g., using the device manager). An example for Windows 7 is given in Appendix D. “Driver Installation Manual”.

2.5 **STEP 4: START AUREA**

Aurea Graphical User Interface, shown in Figure 2-3, is included in the MGC3130 Software Package in the folder \texttt{02_GUI}.

Open \texttt{Aurea.exe}. Aurea detects the connected device automatically and is ready for use.
FIGURE 2-3: AUREA GRAPHICAL USER INTERFACE

1. Positions Tracking
2. Gesture Recognition
3. Demo applications

Evaluate Colibri Suite

1. View signals
2. Write log file
3. Advanced features

Discover Signals

1. AFE parameterisation
2. Colibri Suite parameterization
3. Update GestIC Library
4. Measure Electrode capacitances

Setup MGC3130
3.1 OVERVIEW

The Hillstar key components are listed below and highlighted in Figure 3-1.

FIGURE 3-1: HILLSTAR DEVELOPMENT KIT OVERVIEW

3.1.1 I²C to USB Bridge
1. PIC18F14K50 USB microcontroller
2. Micro-USB connector
3. MCP1801T LDO voltage regulator (converts 5V USB to 3.3 V board supply)
4. Status LEDs (power, communication status)
5. Data interface: 6-pin socket for data communication and power supply

3.1.2 MGC3130 Unit
6. MGC3130 3D Tracking and Gesture Controller
7. Data interface: 6-pin header for data communication and power supply
8. Status LED (power)
9. Interface select
10. Electrode interface: 7-pin socket
11. GesturePort interface (pads for 5 EIOs, 1 GND)
3.1.3 95x60 mm Reference Electrode PCB

12. Receive electrodes
13. Acrylic cover glass (120 x 85 x 2 mm)
14. Electrode interface: 7-pin header (mounted on backside)

The Gerber data of all Hillstar Development Kit components are included in the MGC3130 Hillstar Hardware Reference package and can be downloaded from Microchip’s website www.microchip.com/GestICGettingStarting.

3.2 MGC3130 UNIT

The key element of the MGC3130 Unit is Microchip's MGC3130 3D Tracking and Gesture Controller. The layout print of the unit is shown in Figure 3-2.

FIGURE 3-2: MGC3130 UNIT

The unit provides a 2 mm 7-pin board-to-board connector (socket) to connect the electrode. The interface includes the following signals: GND, Rx4, Rx3, Tx, Rx2, Rx1, and Rx0. Alternatively, the board-to-board connector can be replaced by a 1 mm Flexible Printed Circuitry (FPC) connector which is prepared as a design option. The five Rx channels of the MGC3130 (Rx0…Rx4) are connected to the receive electrodes via 10 kΩ resistors in order to suppress irradiated high-frequency signals (R11, R12, R13, R14, and R15). The MGC3130 signal generator is connected via the Tx signal to the transmit electrode.

The data connection to the Hillstar I²C to USB Bridge is realized by a 6-pin 2 mm board-to-board connector (header). The interface includes the following signals: EIO0, 3.3V, GND, SDA0, SCL0, and MCLR. Alternatively, it is possible to use a 1 mm FPC connector which can be assembled to the bottom side.
The MGC3130 unit acts as an I²C slave device. Table 3-1 shows the configuration of the MGC3130 interface selection pins (IS1, IS2) which can be pulled to VDD or to GND via resistors (R3, R4, R5, and R6) to select the I²C slave address. The I²C device address 0x42 is set as default.

TABLE 3-1: MGC3130 UNIT I²C INTERFACE SELECTION

<table>
<thead>
<tr>
<th>MGC3130 Interface Selection Pins</th>
<th>Mode (Address)</th>
<th>Assembly Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS2 IS1</td>
<td></td>
<td>R3 R4 R5 R6</td>
</tr>
<tr>
<td>0 0 I²C 0 Slave Address = 0x42</td>
<td>n.p. 10 kΩ n.p. 10 kΩ</td>
<td></td>
</tr>
<tr>
<td>1 0 I²C 0 Slave Address = 0x43</td>
<td>10 kΩ n.p. n.p. 10 kΩ</td>
<td></td>
</tr>
</tbody>
</table>

For Schematics, Layout and Bill of Material of the MGC3130 Unit please refer to Section Appendix A. “Schematics”.

3.3 HILLSTAR 95x60 mm REFERENCE ELECTRODE

The 95x60 mm Reference Electrode provided with the Hillstar Development Kit consists of one Tx and a set of five Rx electrodes (north, east, south, west, center), which are placed in two different layers. An additional ground layer is placed underneath the Tx electrode and shields the electrode’s back from external influences.

The PCB is connected to the MGC3130 Unit by the 2 mm 7-pin board-to-board connector. The interface includes the following signals: GND, Rx4, Rx3, Tx, Rx2, Rx1, and Rx0.

The dimension of the board is 120 x 85 mm; the sensitive area is 95 x 60 mm.
The five Rx electrodes include four frame electrodes and one center electrode, as shown in Figure 3-3. The frame electrodes are named according to their cardinal directions: north, east, south and west. The dimensions of the four Rx frame electrodes define the maximum sensing area. The center electrode is structured (cross-hatched) to get a similar input signal level as the four frame electrodes.

The Tx electrode spans over the complete area underneath the Rx electrodes. It is cross-hatched to reduce the capacitance between Rx and Tx (C_{RxTx}). The Tx area below the center electrode covers 50% of the copper plane, the area around only 20%.

The Rx feeding lines are embedded into the Tx electrode in the third layer (refer to Figure 3-4 and Figure 3-5). This supports shielding of the feeding lines.

Dimensions are given in Table 3-2.

FIGURE 3-4: ELECTRODE LAYOUT

![ELECTRODE LAYOUT](image)

TABLE 3-2: HILLSTAR ELECTRODE DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>Length</th>
<th>Width</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Electrodes (Rx)</td>
<td>91.7 mm</td>
<td>5 mm</td>
<td>solid</td>
</tr>
<tr>
<td>Vertical Electrodes (Rx)</td>
<td>70.5 mm</td>
<td>5 mm</td>
<td>solid</td>
</tr>
<tr>
<td>Center Electrode (Rx)</td>
<td>85.7 mm</td>
<td>50.5 mm</td>
<td>3% cross-hatched</td>
</tr>
<tr>
<td>Tx Electrode (refer to Figure 3-4)</td>
<td>120 mm</td>
<td>85 mm</td>
<td>50% cross-hatched</td>
</tr>
<tr>
<td>Part I (under center electrode)</td>
<td>85.7 mm</td>
<td>50.5 mm</td>
<td>20% cross-hatched</td>
</tr>
<tr>
<td>Part II (outside Part I)</td>
<td>120 mm</td>
<td>85 mm</td>
<td></td>
</tr>
<tr>
<td>Ground Area</td>
<td>120 mm</td>
<td>85 mm</td>
<td>solid</td>
</tr>
</tbody>
</table>
The electrode PCB is based on a 4-layer PCB design using FR4 material. Three functional layers are used:

- Layer 1 (Top): Rx electrodes
- Layer 3: Tx electrode and Rx feeding lines
- Layer 4 (Bottom): Ground

Layer 2 is not used.

In a target system design the GND layer is not required. It is added for the Hillstar sensing electrode as a shielding layer and shall simulate the presence of static components which are placed in a target device underneath the sensing electrodes.

Note: Please refer to the “MGC3130 GestIC® Design Guide” for the electrodes equivalent circuitry, capacitances (C_{RxTx}, C_{RxG}, $TxRxG$) and their typical values.

3.4 I²C TO USB BRIDGE

Connecting the MGC3130 Unit to a PC requires an I²C to USB Bridge. The Hillstar Bridge works as a Composite Device Class (CDC). It controls the USB transfer towards the host PC and handles the I²C communication with the MGC3130 Unit. Moreover, it provides 3.3V power supply and the MCLR signal to the MGC3130 Unit.

The bridge function is handled by Microchip’s PIC18F14K50 USB microcontroller. The board is equipped with a micro-USB connector (Type B) and a 2 mm 6-pin female board-to-board connector for the I²C interface. The interface to the MGC3130 Unit includes the following signals: EIO0, 3.3V, GND, SDA0, SCL0, and MCLR. Please refer to Figure 3-6.
The I²C to USB Bridge is powered via the USB port. Microchip’s Low Dropout (LDO) Voltage Regulator MCP1801 is used to transform the 5V USB power to 3.3V required for the PIC18F14K50. By default, 3.3V are also routed to the MGC3130 Unit via the I²C interface. The 3.3V power supply towards the MGC3130 Unit can be cut by removing the 0Ω resistor R7.

The LEDs indicate the following:

- **POWER** – signals that the I²C to USB Bridge is powered (3.3V)
- **LED1** – blinks fast (~10 Hz) to indicate that there is no USB connection established
- **LED1** – blinks slow (~1 Hz) to indicate that the USB connection is established
- **LED 2** – is on when there is data on the I²C bus
- **LED 2** – is off when there is no data on the I²C bus

The communication between Bridge and MGC3130 Unit is accomplished via a 2-wire I²C compatible serial port. Please refer to Figure 3-7.

In addition, the Hillstar Development Kit integrates an open-drain transfer status line (TS) and the MGC3130 MCLR signal, according to the MGC3130 reference circuitry. TS is connected to the RC0 pin of the PIC18F14K50 and MCLR to RC6.

For a detailed description of the I²C interface refer to the “MGC3130 Single-Zone 3D Gesture Controller Data Sheet” (DS40001667).

The default I²C address of the bridge is set to 0x42 but can also be switched to 0x43 by changing the firmware running on the PIC18F14K50.

Note: To update the PIC18F14K50 firmware, please refer to 'MGC3130 PIC18F14K50 Host Reference Code’, available on www.microchip.com/GestICGettingStarted.
FIGURE 3-7: I²C AND USB DATA INTERFACE

For Schematics, Layout and Bill of Material of the I²C to USB Bridge please refer to Section Appendix A. “Schematics”.
Chapter 4. Design In: Hillstar In Target Application

4.1 INTRODUCTION

The Hillstar Development Kit is designed to support an easy integration of Microchip’s MGC3130 3D Gesture and Tracking Controller into customer’s applications. The three Hillstar PCBs can be plugged to a PC via USB cable and used for evaluation of MGC3130 chip and GestIC technology. During the customer’s design-in process the individual boards can be combined according to the customers need.

Three examples are given below:

- Combine MGC3130 Unit and I2C to USB Bridge to evaluate customized electrodes
- Use I2C to USB Bridge to parameterize and debug the MGC3130 application circuitry in the customer’s design (in-circuit)
- Combine MGC3130 Unit and Electrodes to develop gesture-driven applications for PC-based or embedded software environments

For in-circuit parameterization and debugging it is mandatory to control the MGC3130 via Aurea Control Software. For that purpose, the customer’s application should provide an appropriate hardware or software interface.

4.2 INTEGRATION EXAMPLES

The following figures show typical hardware circuits for MGC3130 integration into a customer’s application.

Figure 4-1 and Figure 4-2 show the control via I2C and an external PC. The Hillstar I2C to USB Bridge acts as an I2C master, the application processor I2C should be:

- Switched off (I2C lines configured as high Z, refer to Figure 4-1)
- Switched to Slave or Listen mode or
- Disconnected (through an external switch, refer to Figure 4-2)

As an alternative, it is also possible to establish an USB connection between the application processor and a PC without using an I2C to USB Bridge. Please refer to Figure 4-3.
FIGURE 4-1: MGC3130 PARAMETERIZATION CIRCUIT WITH INTERNAL SWITCH

FIGURE 4-2: MGC3130 PARAMETERIZATION CIRCUIT WITH EXTERNAL SWITCH
FIGURE 4-3: MGC3130 PARAMETERIZATION CIRCUIT FOR USB BASED APPLICATIONS

TABLE 4-1: MGC3130 PARAMETERIZATION CIRCUITS COMPARISON

<table>
<thead>
<tr>
<th>Parameterization Circuit</th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Internal Switch</td>
<td>Easy Approach</td>
<td>Processor pins need to be switchable to high Z</td>
</tr>
<tr>
<td></td>
<td>Low hardware efforts</td>
<td>No other clients can be controlled during Aurea access</td>
</tr>
<tr>
<td>With External Switch</td>
<td>Communication to other I²C clients not interrupted</td>
<td>Additional hardware switch</td>
</tr>
<tr>
<td>USB Based Applications</td>
<td>No hardware efforts</td>
<td>Additional software efforts</td>
</tr>
<tr>
<td></td>
<td>Works if other I²C clients connected to the bus</td>
<td></td>
</tr>
</tbody>
</table>

Customer application

Application Processor

USB to I²C (CDC/HID)

I²C SDA
I²C SCL
Reset
MGC 3130

To electrodes

I²C client

For debugging and parameterization purposes

USB cable

Processor for debugging and parameterization purposes

USB cable
NOTES:
Troubleshooting

Troubleshooting Information

Power LED does not illuminate

In case the power LED does not illuminate it is likely that the board is not powered.

Possible Solutions:

- Check the board is connected to your PC’s USB port.
- Change the USB cable or use a different USB port on your PC.
- Check if the PC is switched on.

LED 1 blinks fast

When LED 1 blinks fast (~10 Hz) the USB connection is not established towards the PC.

Possible Solutions:

- Make sure the Windows CDC driver is installed (refer to Appendix D. “Driver Installation Manual”).
- Makes sure the MGC3130 Unit and the i²C to USB Bridge are already connected before plugging in the USB connection (refer to Section 2.2 “Step 1: Build-up Development Kit”).
- Reconnect the board by unplugging and plugging in again the USB connection.

Signal streaming stops

Signal stream in Aurea GUI stops when there is no approach towards the sensing area. This behavior is intended. When using the Aurea GUI, the Wake-up on Approach feature is automatically enabled.

Possible Solutions:

Disable the Wake-up on Approach feature in the Real-Time Control bar of Aurea by unchecking the Approach Detection/Power Saving check box for continuous signal streaming.

No Position data displayed, Electrode signals are zero

Signal matching parameters have been mismatched and accidentally stored into the Flash.

Possible Solutions:

- Perform “Autoparameterization” in the AFE Parameterization of Aurea Setup tab. Make sure there is no hand approach towards the electrodes during autoparameterization process.
- Restore the default Signal Matching parameters by re-flashing the original MGC3130 GestIC® Library file.

LED 1 and 2 on i²C to USB Bridge are Off

When LED 1 and LED 2 on the i²C to USB Bridge are Off but the power LED is On, the PIC18F14K50 is in Bootloader Update mode and therefore not operating code. The PIC18F14K50 will start in Bootloader Update mode in case the MGC3130 Unit is not connected to the i²C to USB Bridge.

Possible Solutions:

- Please disconnect the i²C to USB Bridge from USB. Connect the MGC3130 Unit and the i²C to USB Bridge first and then plug in the USB connection.
Appendix A. Schematics

A.1 INTRODUCTION

This appendix contains the MGC3130 Hillstar Development Kit schematic and Bill of Materials.

A.2 BILL OF MATERIALS

TABLE A-1: I²C TO USB BRIDGE BILL OF MATERIALS

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Description</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connector, Micro-USB 5-pin Type B, SMD</td>
<td>BU1</td>
</tr>
<tr>
<td>1</td>
<td>Connector, 2 mm socket 6-pin, SMD</td>
<td>BU2</td>
</tr>
<tr>
<td>1</td>
<td>Capacitor, 100 nF, 10%, X7R, SMD 0402</td>
<td>C1</td>
</tr>
<tr>
<td>3</td>
<td>Capacitor, 1 µF, 10%, X5R, 10 V, SMD 0402</td>
<td>C2, C3, C5</td>
</tr>
<tr>
<td>1</td>
<td>Capacitor, 10 µF, 20%, X5R, 6.3 V, SMD 0603</td>
<td>C4</td>
</tr>
<tr>
<td>3</td>
<td>LED, 571 nm, green clear, 0603 SMD</td>
<td>D1, D2, D3</td>
</tr>
<tr>
<td>1</td>
<td>IC, MCP1801T LDO, Voltage Regulator, 3.3V, 150 mA, 5-Pin SOT-23</td>
<td>IC1</td>
</tr>
<tr>
<td>1</td>
<td>IC, PIC18F14K50 USB Flash Microcontroller, 20-Pin SSOP</td>
<td>IC2</td>
</tr>
<tr>
<td>3</td>
<td>Resistor, 1 kΩ, 1%, 1/16W, SMD 0402</td>
<td>R3, R4, R6</td>
</tr>
<tr>
<td>1</td>
<td>Resistor, 150 kΩ, 1%, 1/16W, SMD 0402</td>
<td>R5</td>
</tr>
<tr>
<td>1</td>
<td>Resistor, 0 kΩ, 1%, 1/16W, SMD 0603</td>
<td>R7</td>
</tr>
<tr>
<td>1</td>
<td>Crystal, 12 MHz, 33 pF, SMD</td>
<td>XTAL1</td>
</tr>
</tbody>
</table>

TABLE A-2: HILLSTAR – I²C TO USB BRIDGE MOUNTING OPTION

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Description</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connector, 1 mm FPC 6-pin, SMD</td>
<td>ST1</td>
</tr>
</tbody>
</table>
TABLE A-3: HILLSTAR – MGC3130 UNIT BILL OF MATERIALS

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Description</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connector, 2 mm socket 7-pin, SMD</td>
<td>BU1</td>
</tr>
<tr>
<td>1</td>
<td>Connector, 2 mm header 6-pin, SMD</td>
<td>ST1</td>
</tr>
<tr>
<td>1</td>
<td>Capacitor, 100 nF, 10%, X7R, SMD 0402</td>
<td>C1</td>
</tr>
<tr>
<td>2</td>
<td>Capacitor, 4.7 µF, 20%, X5R, 6.3V, SMD 0402</td>
<td>C2, C3</td>
</tr>
<tr>
<td>1</td>
<td>LED, 571 nm green clear, 0603 SMD</td>
<td>D2</td>
</tr>
<tr>
<td>1</td>
<td>IC, MGC3130, 28-Pin QFN</td>
<td>IC1</td>
</tr>
<tr>
<td>2</td>
<td>Resistor, 1.8 kΩ, 1%, 1/16W, SMD 0402</td>
<td>R1, R2</td>
</tr>
<tr>
<td>8</td>
<td>Resistor, 10 kΩ, 1%, 1/16W, SMD 0603</td>
<td>R4, R6, R7, R11, R12, R13, R14, R15</td>
</tr>
<tr>
<td>1</td>
<td>Resistor, 0 kΩ, 1%, 1/16W, SMD 0402</td>
<td>R16</td>
</tr>
<tr>
<td>1</td>
<td>Resistor, 10 kΩ, 1%, 1/16W, SMD 0402</td>
<td>R17</td>
</tr>
<tr>
<td>1</td>
<td>Resistor, 1 kΩ, 1%, 1/16W, SMD 0402</td>
<td>R18</td>
</tr>
</tbody>
</table>

TABLE A-4: HILLSTAR – MGC3130 UNIT MOUNTING OPTION

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Description</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connector, 1 mm FPC 6-pin, SMD</td>
<td>ST3</td>
</tr>
</tbody>
</table>

A-5: HILLSTAR – ELECTRODE BILL OF MATERIALS

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Description</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connector, 2 mm header 7-pin, SMD</td>
<td>ST1</td>
</tr>
</tbody>
</table>
FIGURE A-1: HILLSTAR GestIC® UNIT SCHEMATIC
FIGURE A-2: ASSEMBLY OF MGC3130 UNIT
FIGURE A-3: HILLSTAR I²C TO USB BRIDGE SCHEMATIC
FIGURE A-4: ASSEMBLY OF HILLSTAR I²C TO USB BRIDGE
Appendix B. Sensitivity Profile and Capacitances

B.1 INTRODUCTION

This appendix contains the sensitivity profile and the electrode capacitances of the Hillstar Development Kit hardware.

The measurement procedure of both, the sensitivity profile and the electrode capacitances are outlined in “MGC3130 GestIC® Design Guide”.

B.2 SENSITIVITY PROFILES

The sensitivity profiles were conducted using a 40x40x70 mm hand brick and a 30 mm spacer brick.

FIGURE B-1: SENSITIVITY PROFILE FROM WEST TO EAST

SD: Signal Deviation
B.3 ELECTRODE CAPACITIES

The capacitances between the Rx electrodes and GND (C_{RxG}) does not include the 5 pF input capacitance of the MGC3130 Rx input buffer (C_{Buf}).

<table>
<thead>
<tr>
<th>TABLE B-3: HILLSTAR ELECTRODE CAPACITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
</tr>
<tr>
<td>North</td>
</tr>
<tr>
<td>East</td>
</tr>
<tr>
<td>South</td>
</tr>
<tr>
<td>West</td>
</tr>
<tr>
<td>Center</td>
</tr>
</tbody>
</table>

$C_{TxG} = 590$ pF
Appendix C. Parameterization Support

C.1 HOW TO BUILD A HAND BRICK

For parameterization and performance evaluation of the customer’s electrode design, the Hillstar Development Kit contains a set of hand and spacer bricks. The hand brick is a conductive block of 40x40x70 mm and represents a human hand. It must be connected to ground via cable in order to simulate the grounding conditions of the human body.

The Hillstar package contains an assembly set to build the hand brick consisting of a Styrofoam block (40x40x70 mm) and an adhesive copper foil.

The following section explains how to assemble the hand brick.

1. **Take the copper layer and the Styrofoam block with the dimensions of (40x40x70 mm).**

2. **Revert the copper layer and remove the glue foil.**
3. Place the Styrofoam block on the copper layer exactly on the middle. Be careful to be accurate! Fold the copper. Follow along the inside lines, and fold the copper inward. Start with right, left sides and then with middle part. Align the folds.

4. Finish up your box. Tape all of the sides together, and you’re done.
5. Solder a thin wire (approx. 50 cm) on the top of the brick which will be connected later to ground.

6. Finished.

C.2 USAGE OF THE HAND BRICK AS ARTIFICIAL HAND

For parameterization and performance evaluation purposes of the customer’s electrode design, the kit contains a set of hand and spacer bricks. This artificial hand brick simulates Human Hand effect and is made of a Styrofoam block covered with light copper and has a fixed size. Spacer bricks (Styrofoam block without copper layer) are used to position the hand brick in different heights to the electrode. Because of a $\varepsilon_r \approx 1$ of Styrofoam, the spacer brick does not influence the measurement results.

For quick parameterization, the ground wire connected to the hand brick should be maintained using your hand which emulates the ground connection. The wire should be hold at 50 cm minimum and the line should also be straight to avoid any influence to the system sensitivity as shown in Figure C-1.

For parameterization process, please refer to “MGC3130 GestIC® Design Guide” and the appropriate wizards in Aurea PC software.
FIGURE C-1: USAGE OF ARTIFICIAL HAND
Appendix D. Driver Installation Manual

Go through the following steps to manually install the Windows CDC Driver on your PC.

D.1 OPEN DEVICE MANAGER

While the Hillstar Development Board is connected to your PC press Start, right-click on Computers and select Manage. This will bring up the Computer Management window shown in Figure D-1. On the left sidebar select Device Manager.

FIGURE D-1: COMPUTER MANAGEMENT

D.2 SELECT DEVICE

1. Right Click on GestIC Bridge and select Update Driver Software.
2. Select Search Method
3. The window shown in Figure D-2 will open. Choose Browse my Computer for driver software.
D.3 LOCATE DRIVER

1. Click **Browse** and navigate to the driver files on your local drive (refer to Figure D-3).
2. Press **Next** and the driver will be installed.

D.4 VERIFY COMMUNICATION

The driver is properly installed and the communication between the PC and the Hillstar Development Board is successfully established when LED 1 and LED 2 blink alternatively.
Appendix E. Glossary

TABLE E-1: GestIC® GLOSSARY

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFE</td>
<td>Analog front end</td>
</tr>
<tr>
<td>Application Host</td>
<td>PC or embedded controller which controls the MGC3130</td>
</tr>
<tr>
<td>Aurea</td>
<td>MGC3130 PC control software with graphical user interface</td>
</tr>
<tr>
<td>Colibri Suite</td>
<td>Embedded DSP suite within the GestIC® Library</td>
</tr>
<tr>
<td>Deep Sleep</td>
<td>MGC3130 Power-Saving mode</td>
</tr>
<tr>
<td>E-field</td>
<td>Electrical field</td>
</tr>
<tr>
<td>Frame Electrodes</td>
<td>Rectangular set of four electrodes for E-field sensing</td>
</tr>
<tr>
<td>GestIC Technology</td>
<td>Microchip’s patented technology providing 3D free-space gesture recognition utilizing the principles of electrical near-field sensing</td>
</tr>
<tr>
<td>GestIC Library</td>
<td>Includes the implementation of MGC3130 features and is delivered as a binary file preprogrammed on the MGC3130</td>
</tr>
<tr>
<td>Gesture Recognition</td>
<td>Microchip’s stochastic HMM classifier to automatically detect and classify hand movement patterns</td>
</tr>
<tr>
<td>Gesture Set</td>
<td>A set of provided hand movement patterns</td>
</tr>
<tr>
<td>Hand Brick</td>
<td>Copper coated test block (40x40x70 mm)</td>
</tr>
<tr>
<td>HMM</td>
<td>Hidden Markov Model</td>
</tr>
<tr>
<td>MGC3130</td>
<td>Single-Zone 3D Gesture Sensing Controller</td>
</tr>
<tr>
<td>Position Tracking</td>
<td>GestIC technology feature</td>
</tr>
<tr>
<td>Sabrewing</td>
<td>MGC3130 evaluation board</td>
</tr>
<tr>
<td>Self Wake-up</td>
<td>MGC3130 Power-Saving mode</td>
</tr>
<tr>
<td>Sensing Area</td>
<td>Area enclosed by the four frame electrodes</td>
</tr>
<tr>
<td>Sensing Space</td>
<td>Space above sensing area</td>
</tr>
<tr>
<td>Signal Deviation</td>
<td>Term for the delta of the sensor signal on approach of the hand versus non-approach</td>
</tr>
<tr>
<td>Spacer Brick</td>
<td>Spacer between the sensor layer and hand brick (Styrofoam block 40x40xh mm) with h= 1 / 2 / 3 / 5 / 8 / 12 cm</td>
</tr>
<tr>
<td>SPU</td>
<td>Signal Processing Unit</td>
</tr>
<tr>
<td>Approach Detection</td>
<td>GestIC technology feature: Power-Saving mode of the MGC3130 with approach detection</td>
</tr>
</tbody>
</table>
NOTES:
Worldwide Sales and Service

<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
</table>
| Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Fax: 248-848-4100
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
New York, NY
Tel: 631-435-6000
Fax: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Fax: 408-735-9110
Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8960-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Fax: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7300
Fax: 82-2-554-7301
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7828
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-39
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Dusseldorf
Tel: 49-2129-3766400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Venice
Tel: 39-049-6725286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Poland - Warsaw
Tel: 48-22-3325737
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820 | 07/14/15 |