The **IB Series** interface boards have been developed as economical compliments to the TCB temperature control boards. The **IB Series** is available in four basic models, IB1, IB2, IB3 and IB6, and each can accept 4-20 milliamp or 0-10 volt DC analog input signals. All are designed to allow externally supplied control signals to control one or two Sporlan step motor valves including CDS evaporator control valves, SDR electric discharge bypass valves and SEI/SER/SEH electric expansion valves.

The IB1 is programmed to control any Sporlan step motor valve having 1596 steps of resolution, the IB2 is used with valves having 2500 steps, the IB3 is used with valves having 3193 steps and the IB6 is used on valves with 6386 steps. “Q” denotes quick response for special applications. Please contact Sporlan Valve Company. Refer to Ordering Information, page 3.

CONFIGURE the BOARD

When used with a 0-10 volt input signal, a jumper should be placed on the pins labeled CN3 as shown in the Figure 1. This is the default jumper position. The impedance for this input is 40 k ohms.

When used with a 4-20 milliamp input, the board must be matched to the impedance of the external controller. Refer to the manufacturer’s literature and choose the jumper position on CN4 as shown Figure 1. Possible impedance selections on CN4 are 1,000 ohms (1k), 600 ohms, and 300 ohms.

Choose “Open on Rise” or “Close on Rise” operation using the middle two pins on jumper CN2. The jumper is stored on one pin only and will cause the valve to open as input signal rises, i.e. valve is closed at 0 volts or 4 milliamps and fully open at 10 volts or 20 milliamp input. By placing the jumper on both pins, the operation is reversed so that the valve will be fully open at 0 volts or 4 milliamps. Other pins on CN2 have been clipped at the factory and are not used for operation of the valve.

MOUNT the BOARD.

The **IB Series** is based on a 3.0” x 3.0” circuit card with 0.125” mounting holes, 0.25” from each corner. If desired, these mounting holes may be used with customer supplied non-metallic standoffs. The **IB Series** does, however, come supplied with length of snap-in plastic track. The track should be mounted in the desired location and one side of the IB engaged in the upper groove in the track. The IB is then pushed down so that the opposite side of the board snaps into the uppermost groove in the opposite side of the track. The board may be mounted in the orientation most convenient for wiring. Location should be dry, protected and close to the 24 volt power supply and external controller.

WIRING INSTRUCTIONS & CAUTIONS

Use the chart above as a guide for wire connections. Certain precautions must be taken in wiring and operation of the **IB Series**.

1. The 24 volts must be supplied by a 30 VA or 40 VA transformer not used for any other purpose. In addition, the secondary winding of the transformer must not be connected to chassis ground. A single transformer may be used for multiple IB boards. If this feature is used, one leg of the 24 volt supply must be connected to all of the IB boards at the 24+ terminal. The other leg of the 24 volt supply must be connected to all of the IBs at the 24- terminal. Please refer to Figure 2.

Incorrect wiring will cause the fuse to fail, a spare fuse is included and may be replaced with any 1 amp 250 volts delay fuse type GMC1 or equivalent. Wiring should be corrected before replacing the fuse.

2. The primary input of the transformer should be protected by Metal Oxide Varister (MOV) surge suppressors, supplied with the IB. For protection from electrical transients, connect
From left to right when the board is oriented with the terminal strip across the bottom.

+4-20 - connection for the positive leg of a 4-20 milliamp or 0-10 volt signal
-4-20 - connection for negative leg of a 4-20 milliamp or 0-10 volt signal
B - black wire from valve, or both valves when two valves are used
W - white wire from valve, or both valves when two valves are used
G - green wire from valve, or both valves when two valves are used
R - red wire from valve, or both valves when two valves are used
IN - from external pumpdown switch or relay. See wiring instructions.
GND - to external pumpdown switch or relay. See wiring instructions.
24V-1 - from 24 volt, 20 VA transformer. See wiring instructions.
24V-2 - from 24 volt, 20 VA transformer. See wiring instructions.

NOTE: Power supplied may be 24 volts AC or DC.

One MOV between one leg of the input voltage (high side) of the 24 VAC transformer and earth ground. Connect a second MOV between the other leg of the input voltage of the 24 VAC transformer and earth ground. See Figure 2.

3. The pumpdown terminals must be supplied with a “dry” contact from a switch or relay. No external power should be applied to these terminals.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>MODEL</th>
<th>PART#</th>
<th>STEPS</th>
<th>USED on VALVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB1</td>
<td>952955</td>
<td>1596</td>
<td>SEI-1.5, SER-1.5, SER-20 for discharge</td>
</tr>
<tr>
<td>IB2</td>
<td>983188</td>
<td>2500</td>
<td>CDS-4, CDS-7</td>
</tr>
<tr>
<td>IB3</td>
<td>952956</td>
<td>3193</td>
<td>SDR-3, SDR-3X</td>
</tr>
<tr>
<td>IB6</td>
<td>952957</td>
<td>6386</td>
<td>CDS-9, CDS-16, CDS-17</td>
</tr>
<tr>
<td>IB1Q</td>
<td>952958</td>
<td>1596</td>
<td>SEI-5, SEI-11, SER</td>
</tr>
<tr>
<td>IB2Q</td>
<td>983189</td>
<td>2500</td>
<td>SERG, SERI-J, SERI-K</td>
</tr>
<tr>
<td>IB3Q</td>
<td>952959</td>
<td>3193</td>
<td>SEI-30</td>
</tr>
<tr>
<td>IB6Q</td>
<td>952960</td>
<td>6386</td>
<td>SEI-50, SEH</td>
</tr>
</tbody>
</table>

OPERATION and TROUBLESHOOTING

When properly configured and installed the **IB Series** requires no maintenance. They incorporate a number of operational features to assure trouble free service. On power-up the board will initialize by giving the valve a large number of steps to assure that the valve is fully shut. The routine will require approximately 8 seconds for the IB1, 16 seconds for the IB2 and IB3, and 32 seconds for the IB6. The valve will not respond to input signals during this time.

If the valve is required to shut during operation, the pumpdown terminals should be used. When given a pumpdown signal, the board will shut the valve immediately and overdrive by 250 steps to reset valve position. On removal of the pumpdown signal the valve will resume position as dictated by the external control signal.

If power is lost to the IB or wire to the valve severed, the valve will remain in its last position. Solenoid valves may be desired before the step motor valve on critical applications.

To force the valve shut during operation for test purposes, simply remove the jumper from CN4 or CN3, depending on configuration. To resume normal operation, replace the jumper.

To allow for component tolerances, the IB will shut the valve when the input signal reaches 4.05 milliamps or 0.05 volts depending on the configuration.

The IB can power one or two valves. The valves will operate simultaneously and will open and close by the same number of steps. Valve wires must be connected exactly the same for both valves.
CLIMATE CONTROL
- Accumulators
- CO2 controls
- Electronic controllers
- Filter-driers
- Hand shut-off valves
- Heat exchangers
- Hose & fittings
- Pressure regulating valves
- Refrigerant distributors
- Safety relief valves
- Solenoid valves
- Thermostatic expansion valves

AEROSPACE
- Flight control systems & components
- Fluid conveyance systems
- Fluid metering delivery & atomization devices
- Fuel systems & components
- Hydraulic systems & components
- Inert nitrogen generating systems
- Pneumatic systems & components
- Wheels & brakes

ELECTROMECHANICAL
- AC/DC drives & systems
- Electric actuators, gantry robots & slides
- Electrohydraulic actuation systems
- Electromechanical actuation systems
- Human machine interfaces
- Linear motors
- Stepper motors, servo motors, drives & controls
- Structural extrusions

FILTRATION
- Analytical gas generators
- Compressed air & gas filters
- Condition monitoring
- Engine air, fuel & oil filtration & systems
- Hydraulic, lubrication & coolant filters
- Process, chemical, water & microfiltration filters
- Nitrogen, hydrogen & zero air generators

FLUID & GAS HANDLING
- Brass fittings & valves
- Diagnostic equipment
- Fluid conveyance systems
- Industrial hose
- PTFE & PFA hose, tubing & plastic fittings
- Quick disconnects
- Rubber & thermoplastic hose & couplings
- Tube fittings & adapters

HYDRAULICS
- Diagnostic equipment
- Hydraulic cylinders & accumulators
- Hydraulic motors & pumps
- Hydraulic systems
- Hydraulic valves & controls
- Power take-offs
- Quick disconnects
- Rubber & thermoplastic hose & couplings
- Tube fittings & adapters

PNEUMATICS
- Air preparation
- Brass fittings & valves
- Manifolds
- Pneumatic actuators, grippers, valves, controls & accessories
- Quick disconnects
- Rotary actuators
- Rubber & thermoplastic hose & couplings
- Structural extrusions
- Thermoplastic tubing & fittings
- Vacuum generators, cups & sensors

PROCESS CONTROL
- Analytical sample conditioning products & systems
- Fluoropolymer chemical delivery fittings, valves & pumps
- High purity gas delivery fittings, valves & regulators
- Instrumentation fittings, valves & regulators
- Medium pressure fittings & valves
- Process control manifolds

SEALING & SHIELDING
- Dynamic seals
- Elastomeric o-rings
- EMI shielding
- Extruded & precision-cut, fabricated elastomeric shapes
- Homogeneous & inserted elastomeric seals
- High temperature metal seals
- Metal & plastic retained composite seals
- Thermal management